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Abstract

This paper presents a novel global path planning
method for field mobile robots operating on rough
natural terrain. The focus of this approach is on
terrain-based path planning in which an optimally
safe path of minimum traversal cost is constructed
given the traversability characteristics of the terrain.
The novelty of this method is the incorporation of
the Traversability Map, a multi-valued map
representation of ftraversal difficulty of terrain
segments, into the path planning logic. The search
methodology uses a traversal cost function that is
defined by the user and is derived directly from this
Traversability Map. The path planning method is
developed in detail and both computer simulation
and field test results are presented.

1. Introduction

With sensor-based local navigation strategies, an
autonomous mobile robot operates in an unknown
environment using locally-sensed information. This
allows actions to be performed without the need to
build an exact world model or to use complex
planning processes. Although such strategies allow
the robot to operate in real-time by requiring
minimal memory storage and computational
resources, the robot is not guaranteed to select the
best path to its goal, or even attain its goal.
Situations can arise in which the robot becomes
trapped locally during exploration, unable to reach
its desired goal location. This realistic possibility is
detrimental to the mission, resulting in lost time and
resources that can ultimately lead to mission failure.
However, the performance of such locally-based
navigation strategies can be improved significantly
when prior global information is available. By
utilizing a global path planner to specify a path
between the start and desired goal locations, goal
attainment can be evaluated before actual traversal,

and thus the probability of mission success will be
enhanced significantly.

The process of planning global paths for robots
operating on harsh, natural terrain is a difficult task.
Traditional path planners use the concept of goal-
attainment, while avoiding obstacles, as the driving
force. In order to allow successful completion of
robotic exploratory missions in high-risk access
terrains, we have developed a novel terrain-based
global path planner that focuses on developing a
path of minimum traversal cost while incorporating
terrain characteristics. The method focuses on
creating a traversability map based on global terrain
features and plans paths accordingly. The
traversability map has a multi-valued representation
and denotes the ease-of-traversal of different regions
of the terrain. By segmenting the global terrain into
regions with distinct traversability characteristics,
map modeling can cover a larger ground area than
an obstacle-based representation, while still
maintaining the same computational load. For path
designation, the planner calculates a series of

waypoints passing through regions of this
traversability map. These waypoints are later
integrated with regional terrain assessment

navigation logic, as well as with local hazard
avoidance behavior, to develop a complete
navigation scheme capable of traversing long
distances (Figure 1).

The main difference between this focus and
traditional global planning methods is that both
navigational safety and traversal cost are analyzed
using aerial imagery or land surveying data. The
motivations for this approach are to: 1) reduce the
computational resources necessary for terrain -
based path  planning by incorporating a
minimalist representation of the terrain using the
Traversability Map, and 2) develop a safe path
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Figure 1. Terrain-based robot navigation scheme

which connects start and goal locations with regard
to terrain features.

2. Background

Traditional path planning methods [see, e.g., -1]
focus on a binary representation of the terrain from
an obstacle occupancy point of view. Specifically,
the terrain is segmented using a grid representation
and binary values (0 or 1) are assigned to the cells in
the grid. In this case, traversable obstacle-free cells
are represented by 0, and 1 denotes an untraversable
cell occupied by an obstacle. A more
comprehensive approach to terrain representation is
to characterize the presence of an obstacle in a grid
cell using non-binary values. In this setting, a grid
cell is not assigned a binary value, but instead is
given a continuous value that represents the
probability distribution for occupancy of the grid
cell by an obstacle [2]. Even these comprehensive
representations only account for the obstacle
presence and disregard the intrinsic terrain
properties. As such, they facilitate obstacle-based
path planning but do not address terrain-based path
planning. Once an  obstacle-based  grid
representation is constructed, traditional path
planners generate the shortest path that connects the
robot’s start and designated goal positions while
ensuring untraversable cells are circumvented. In
these approaches, there is no provision for
representing ranges of impassability. In addition, if
the constructed surface map encompasses a large
area, the planning process becomes computationally
intense and the large memory required for map
storage makes the method incapable of replanning in

a time-efficient manner. There has been some
efforts in developing regional planners that
overcome these limitations [3,4], but they still utilize
a binary obstacle-based representation for map
construction. These efforts (RoverBug and D*) fall
under the category of sensor-based motion planning
in which the robot uses a simple representation of
obstacles detected with on-board sensors, to
conserve both memory and computational resources,
and to avoid obstacles while traversing through
rough terrain. These algorithms construct local path
segments based on the sensed environment and use
this information to re-plan paths in an incremental
fashion.

POOR MODERATE  HIGH

1><XX

Traversability Index 1
Figure 2. Traversability Index representation
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Our approach differs from traditional methods by
using a gradual gradation of the terrain
traversability called the Rule-Based Traversability
Index [5]. This Traversability Index is represented
by the four fuzzy sets {POOR, LOW, MODERATE,
HIGH} that correspond to unsafe, moderately-
unsafe, moderately-safe, and safe terrain segments
respectively (Figure 2). Each terrain segment is
assigned a traversability score, which grades the
level of risk (or safety) associated with traversing
over the given region. As in the traditional methods,
the extremes of the multi-valued range are



equivalent to regions that are either completely
impassable or easily passable. Traversability values
in-between these limits correspond to regions with
varying degrees of traversal difficulty. Based on this
multi-valued representation of terrain traversability,
paths are planned to minimize traversal cost.
Waypoints through these regions are calculated and
sent to a regional terrain assessment algorithm
which determines the safest regional segment to
traverse based on cameras on-board the robot.
During traversal, a local hazard avoidance algorithm
ensures that the robot circumnavigates local hazards.
It is this multi-resolution approach (global region-
based planning and local region assessment) that
allows the planner to operate on a minimal
representation. That is, given estimates of the
regional traversability available at planning time and
the finer-grained local sensor-based hazard
avoidance at execution time, granularity of the
traversability map and associated planning process
can be much larger than in traditional obstacle-based
planners.

3. Terrain-Based Path Planning

The path planning approach developed here is based
on the new concept of Traversability Index. We
have developed the terrain-based path planner for
mobile robots by integrating two main concepts:
traversability map building and global terrain-based
path planning (Figure 3).

algorithm, which assigns traversability scores based
on terrain characteristics using a fuzzy-logic rule-
base [6]. For example, a crater can ‘easily be
designated as untraversable, and thus will receive a
POOR traversability index, whereas a hill,
depending on its slope, may receive any value
associated with POOR to MODERATE
traversability. A typical rule set will thus be:

IF Plateau is Present and Roughness is Smooth,
THEN Traversability is High

IF Hill is Present and Slope is Slanted,
THEN Traversability is Moderate

IF Plateau is Present and Roughness is Rocky,
THEN Traversability is Low

IF Crater is Present, THEN Traversability is Poor
The outcome of this algorithm is the Traversability

Map, which is represented by regions of different
traversability scores (Figure 4a).
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Figure 3: Overview of T* path planning algorithm

The Traversability Map represents the ease-of-
traversal of the global terrain. Thus, the
traversability = map-building process involves
identifying major terrain features (such as hills,
lakes, valleys) as observed in images obtained
during prior aerial imaging or land surveying. These
image collections allow for planning at different
scales of resolution. This terrain information is
passed onto the traversability —map-building

(b)
Figure 4. Traversability Map (a) and Grid (b)

A grid map based on the traversability map is then
generated in which each grid cell is assigned the
minimum traversability value of any region enclosed
by that cell (Figure 4b). This ensures that a cell is
marked untraversable if any part of the cell is
untraversable. From this point, a search algorithm is
used to find an optimal path from the robot’s start
position to a designated goal position. In order to
enable long-range traverses of mobile robots, the
designated path must be implemented in minimum
distance (or time) and ensure robot survivability.
The inputs to the search algorithm are thus the
Traversability Map, the robot’s initial position, and
desired destination. The output from the algorithm is
a set of waypoints designating a minimal traversal
cost path from the start position to the goal location.



The focus of the global path planning algorithm is to
find a path that minimizes a user-defined traversal
cost function. By using a local behavior strategy, the
“mobile robot can move in its uncertain environment
without risk from obstacles or poor traversability
regions. Thus, it is not necessary for the global path
planner to construct an exact path. Instead, only a
sequence of reasonably spaced waypoints is required
[7]. Given the robot’s initial position and
destination, and the traversability grid, an A* search
strategy [8] is implemented to determine the
sequence of waypoints necessary for path
achievement.

A¥* attempts to find a solution which minimizes the
total traversal cost of a solution path by combining
the advantages of two search techniques known as
best first search and breadth first search [9].
Breadth first search attempts to find the best path by
looking at solutions with minimal cost from the
initial start location, whereas best first search
attempts to guess at the best optimal solution by
using heuristics. The A* search algorithm thus
assigns to each possible solution a combination of
the cost of the path traversed so far and the
estimated cost to the goal solution. A* is classified
as a heuristic-based search methodology that
searches through the solution space by minimizing a
user-defined cost function. Each grid cell represents
a possible node to be searched and is given an
associated cost value. This cost function is based on
maximizing safety (traversability value) and
minimizing the path length for goal attainment. For
our application, this cost function is defined as:

C= azfi+ﬂ21i

where 7 is the traversability index of cell i, while
1/7; represents the cost associated with traversing
cell i, and /; is the distance from the goal cell
position to cell i’s position in the grid-map. The
relative values of o and [ represent the
aggressiveness of the traversal cost function, where
aggressive is related to the willingness of the user to
take risks. For an aggressive cost function, o is
chosen low and P is chosen high; whereas for a
conservative function, o is high and f is low.

The rule-base is designed to prefer safe paths. In
other words, to arrive at the destination safely is
more important than trying to find the shortest path
through the terrain. The weights ot and 8 can be
adapted based on user constraints. For example, if
safety is as equally important as path length, both o
and B can be given equivalent weighting values.
Under no circumstances though, do we allow the
robot to traverse a POOR traversability region in
which there is unacceptable risk to the robot. Once
a safe path is constructed using the search
methodology, waypoints are calculated and sent to
the regional terrain assessment algorithm on-board
the robot.

4. Path Planner Graphical Simulator

The Path Planning Graphical Simulator is a software
tool developed at JPL. It provides an essential tool
for visualization and testing of the capabilities
offered by the terrain-based path planning method
described in this paper. The simulator is written as a
Java application for platform independence, and
runs on PCs as well as on Sun Unix machines. A
snapshot of the graphical interface is shown in

Figure 5.

Figure 5. Path planning graphical simulator

The main components of the graphical simulator are:



o A graphical user interface that includes
selectable options used by the planner

o A terrain image viewer/editor that displays
terrain maps and resulting paths

The first step in the path planning process is
selecting a terrain map of interest. Grayscale images
are used to represent the traversability values which
correspond to terrain features and are denoted using
a range of grayscale pixel values. A pixel value of
255 (white) represents a terrain region that is safe
for robot traverses, whereas a pixel value of 0
(black) represents terrain that is unsafe, resulting in
unacceptable risk to the robot. Values in-between
correspond to varying degrees of terrain safety. A
user may select different terrain images for path
planning purposes using the graphical simulator, or
the wuser may interactively add or remove
traversability regions from the displayed image map.

The next step in the process is to populate the user-
selectable options, which parameterize the path
planner’s performance. The selectable options
include:

o Set Weights
> Select values for the o and B weights used
in the cost function mentioned above.

o Set Grid Resolution
> Segment the image scene into individual
grid cells. The higher the resolution value,
the faster the search process.

o Set Robot Positions
» Specify robot initial
destination.

position and

Once all options are entered, the user may run the
path planner, at which point the image scene is
segmented into individual grid cells using the grid
resolution parameter and a cost is associated with
each cell. The cost value is then used to find the
minimal safest path that links the robot’s start and
goal positions, after which the path planning results
are graphically displayed to the user.

Using the path planning graphical simulator, we
have performed computer simulations to compare
our algorithm with the classical A* search method.

Table I and Figures 6-7 compare sample results
from the traditional A* path planning method versus
our terrain-based T* path planner.

Observe that in Figures 6a and 7a, most of the path
obtained by the T* algorithm differs from the path
obtained by the A* algorithm. Figure 6a shows the
capability of the T* path planner to compute a path
of shorter length than the traditional A* algorithm.,
In essence, the T* algorithm is able to compute a
feasible path which crosses areas that contain
acceptable risks, whereas the A* algorithm
circumnavigates these regions entirely. Figures 6b
and 7b show the extreme situation in which the A*
algorithm is unable to find a feasible path because
the goal is positioned in a region also occupied by a
terrain hazard. In contrast, T* is able to successfully
plan a path from the start to goal location based on
its ability to deal with the multi-valued
representation of the terrain hazards.

(a) (b)
Figure 6. Sample results of T* path planning method

(a) ) (b)
Figure 7. Sample results of A* path planning




Figures | T* path length A* path length
a 174 187
b 79 No path found

Table 1. Results obtained from comparing T* and
A¥* path planning methods

5. Field Tests

Figure 8 shows snapshots of the field test site used
for testing the path planning method with a Pioneer
2AT mobile robot. Figure 9 shows the
corresponding traversability map derived from the
test site by land surveying. The chosen site covers
an area of 29m by 38m and contains regions of
rocky hills, steep slopes, and flat sandy zones. In
this paper, we present case studies to demonstrate
the capabilities of the terrain-based path planning
method for mobile robots. The path planning
simulation results for these runs are shown in Figure
10 and the corresponding A* runs are depicted in
Figure 11.

Figure 8. Field test site photos

Figure 9. Derived traversability map from land
survey

(b)
Figure 10. T* path planning results from case
studies

(b)

Figure 11. A* path planning results from case
studies

In Figures 9-11, the white, light gray, dark gray, and
black regions have HIGH, MODERATE, LOW, and
POOR traversability indices respectively. Two case
studies are considered. The first case study is shown
in Figures 10a and 1la, and the second case is
shown in Figures 10b and 11b. By comparing
Figures 10a and 1la, it is seen that the path
generated by the T* path planner is considerably
shorter than that generated by the A* planner.
Similar observations can be made by comparing the
paths shown in Figures 10b and 11b. We conclude
that the use of the multi-valued representation of
terrain traversability allows the robot to physically
traverse areas which otherwise would be considered
untraversable given a binary representation of
terrain hazards. In both test cases, the T* algorithm
is able to find paths of shorter length than the A*
algorithm and is still able to safely reach the goal
position. In the field tests (Figure 12), the robot
successfully follows the path generated by the T*
planner.



Figure 12. A typical field test photo of rover
traversal

6. Conclusions

We have presented a novel terrain-based path
planner which uses the concept of the traversability
map to incorporate terrain characteristics into the
path planning process in order to plan safe paths on
hazardous terrain. The utilization of the
traversability index is shown to provide a natural
terrain-based representation, which is necessary for
planning safe paths in rough, natural terrain. This
framework is particularly suitable for planning paths
for planetary robots in that it reduces the
computational resources necessary for terrain-based
path planning by incorporating a minimalist
representation of the terrain. This is accomplished
by segmenting the global terrain into regions with
distinct traversability characteristics, where the
region boundaries need not be known accurately.
Through experimentation, it is shown that this
methodology leads to improved results over the
traditional path planning methods. Future work will
involve integrations of the planner with regional
terrain assessment and local navigation behavior on-
board the robot.
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